
Miller Analyser for MATLAB
User’s Manual

Attila Gáti∗

July 12, 2010

1 Introduction

Miller Analyser for MATLAB is an automatic roundoff error analyser software, that extends the
work of Miller et al. [1, 2, 3, 4, 5]. The software runs within the MATLAB environment, and
can test the stability of numerical methods given as m-functions. Based on the algorithm of
Miller, a number ω (d) is associated with each set d of input data. The function ω (d) measures
rounding error, i.e. ω (d) is large exactly when the method applied to d produces results which
are excessively sensitive to rounding errors. A numerical maximizer is applied to search for large
values of ω. Finding large values of ω can be interpreted, that the given numerical method is
suffering from a specific kind of instability.
We can perform analysis based on several error measuring numbers (various ways of assigning

ω), and beside analysing the propagation of rounding errors in a single algorithm we can also
compare the numerical stability of two competing numerical methods, which neglecting rounding
errors compute the same values.
The analysis is based on the standard model of floating point arithmetic, which assumes that

the individual relative rounding errors on arithmetic operations are bounded by the machine
rounding unit. Practically, the computed result equals the correctly rounded exact result. The
IEEE 754/1985 standard of floating point arithmetic guarantees that the standard model holds
for addition, subtraction, multiplication, division and square root. Unfortunately, it is not true
for the exponential, trigonometrical, hyperbolical functions and their inverses. Hence, we can
analyse only numerical algorithms that can be decomposed to the above mentioned five basic
operations and unary minus, which is considered error-free.
The first step of computing the error function ω (d) is building the computational graph of the

analysed numerical method. Decomposition of a numerical method at a particular input d = d0
to the allowed arithmetic operations give rise to a directed acyclic graph, the computational
graph, with a node for each input value, output value and operation. There are arcs from each
arithmetic node (ie., one corresponding to an operation) to the nodes for its operands and from
each output node to the operation that computes its value.
According to the resulting computational graph the output computed as a function: Rd0 (d, δ)

(Rd0 : Rn+m → Rk), where d ∈ Rn is the input vector, and δ is the vector of individual relative
rounding errors on the m arithmetic operations (δ ∈ Rm, ‖δ‖∞ ≤ u, where u is the machine
rounding unit). The computation of ω (d) is based on the partial derivatives of Rd0 with respect
to the input and the rounding errors. We apply automatic differentiation on the graph in reverse
order, ie. the chain rule is applied in the opposite direction as the basic operations were executed.

∗Óbuda University, Bécsi út 96/b 1034 Budapest, Hungary, email: matgati@gmail.com

1

2 The contents of the package

The miller/src directory contains the C++ and Fortran language source files. The C++ source
can be found in the roundoff, while the FORTRAN language source files in the forround
directory. These source files must be compiled and linked into one MATLAB MEX file (see
MATLAB External Interfaces Reference for detailed information on creating C-language mex
files [6]). The resulting mex file must be named roundoff.<mexext>, where <mexext> is the
platform dependent file extension of mex files (on 32 bit Windows platforms with MATLAB 7.1
or later the extension is mexw32).
A win32 version of the roundoff MEX file compiled for MATLAB 7.4.0 can be found in

miller/bin. For other platforms or versions of MATLAB it may be required to be recompiled
to work properly. Communication between MATLAB and roundoff.<mexext> is implemented
through the interface of a MATLAB class called miller. The m-files defining class miller re-
sides in bin/@miller. The analysed numerical method can be given in the form of MATLAB
m-functions. To build the computational graph, a special class called cfloating has to be
used instead of the built-in MATLAB arrays. The bin/@cfloating directory contains the cor-
responding m-files. In addition an object of class named miller_ptr must also be used in
the m-file implementing the analysed algorithm. Actually this object represents the compu-
tational graph being built. bin/@miller_ptr is the implementation directory for that class.
The miller/examples directory contains some examples with numerical methods capable for
analysis.

3 Installation

The miller/bin directory has to be added to the MATLAB path. Start MATLAB, and run
setpath.m to add the required directories to your MATLAB path.

4 Defining the numerical method to analyse by m-file pro-
gramming

The numerical method to analyse must be implemented in a special way in the form of m-
functions. The numerical algorithm can be given either as a single m-function, or it can be
organized into a main m-function and one or more subfunctions. The purpose of these m-files
is to build the computational graph corresponding to the floating point operations performed
when the numerical algorithm is executed upon a given input data. Instead of the built-in
double precision MATLAB array, we use a special class called cfloating, for which the arithmetic
operators and the function sqrt for square root are defined (overloaded). When the error analyser
calls the main m-function, the MATLAB interpreter executes it. Upon performing the operations
on the variables of type cfloating, beside computing the floating point result of the operation,
the appropriate node is also added to the computational graph. The cfloating class contains two
fields (data members): the actual floating point value, as in the case of ordinary variables, and a
node identifier, which identifies the node in the graph corresponding to the given floating point
value.
As every MATLAB variable, cfloating is also an array, and every element of the array con-

tain the two fields: value and node identifier. It can be a matrix (two dimensional array) or
a multidimensional array (array with more than two dimension). Scalars (1-by-1 array) and
vectors (1-by-n or n-by-1 array) are special matrices in MATLAB. The MATLAB operators:
+,−, ∗, /, .∗, ./, .\ and the function sqrt can be applied, scalar, vector, and matrix operations

2

are also supported. The cfloating type substitutes the real, double precision MATLAB type, the
complex arithmetic is not supported directly. By algorithms involving complex computation, the
user must decompose the complex operations to real arithmetic by hand. We are planning to
add direct support of complex arithmetic in the future.

4.1 The main m-function

Algorithm 1 Main function

1: function main(identifier)
2: identifier=miller_ptr(identifier);

3: Initializing the input as cfloating arrays
and adding the input nodes to the graph

4: Run the algorithm using cfloating type
to add the arithmetic nodes
and compute the output as cfloating array

5: Add the output nodes to the graph
end

The main m-function is the m-function that is dedicated to be called by the error analyser,
when the computational graph has to be built. Algorithm 1 shows the general form of the main
m-function. As in line 1, the main m-function must have one input argument and it must not
have any output arguments. To make MATLAB able to find our main m-function, it has to be
reside in an m-file with the same name, and the m-file must be on the MATLAB path or in the
working directory. Line 2 fulfills a formal requirement, all such m-functions have to be begun
with that statement. Actually it creates a handle to the computational graph being built and we
will use it for several purposes (instead of ’identifier’ any valid variable name can be used).

In our model the analysed numerical method computes a function P (d) (P : Rn → Rk,
d ∈ Rn is the input vector) The length n of the input vector d is always fixed for analysis, error
maximization is performed in the n dimensional space Rn.

In many cases P is not defined at every point in Rn, since no division by zero may occur and
no square root of a negative number may be taken. If the MATLAB interpreter encounters such
an operation, it signals the error condition by throwing an exception. The maximizer catches
the error, so the maximization process is not terminated, but continues at other data d.
We say that a numerical algorithm is a straight-line program, if it does not contain branches

depending directly or indirectly on the particular input values, and the loops are all unrollable
taxative loops. In the case of such programs a unique computational graph represents the
algorithm (assuming that the number of inputs is fixed), so it is enough to call the main m-
function and build the computational graph only once1 . On the other hand, if the flow of control
depends on the input values, we regenerate the graph by calling the main function at every

1 In some cases we run the algorithm at the first time in order to count the operations and determine the
amount of memory to allocate, and make an additional call to build the graph.

3

d input data, upon which the error measuring number is to be computed. In such cases, the
number of arithmetic operations may also depend on d.
In a computational graph, there can be four kinds of node. First we add the input nodes that

correspond to the n entries of the input vector d (see line 3). In the next step (line 4) we run
the algorithm on d. Beside evaluating the m operations, we also add m arithmetic nodes to the
graph. We distinguish six kinds of arithmetic nodes: four correspond to the binary operations (+,
-, *, /) and two to square root and unary minus. A constant value may also appear as operand
in an operation. In the graph, constant nodes corresponds to the constant values used in the
algorithm. Finally, some of the arithmetic nodes are designated as output nodes meaning that
the result of the given operation is one of the output values of the algorithm (line 5). In order
to evaluate the error measuring number at d, the partial derivatives of the values corresponding
to the output nodes with respect to the values corresponding to the input nodes and the relative
rounding errors hitting the arithmetic nodes will be computed.

4.2 The input nodes

Assume that the main m-function is called, and the MATLAB interpreter is about to execute
line 3. At that point, the number n of inputs is fixed and the actual floating point values of
the inputs, the entries of d are set. Our task is to create and initialize input variables of type
cfloating with the values of d, and add the corresponding n input nodes to the computational
graph. Three routines will help us: input_size, input, parameter.

4.2.1 input_size

Syntax:

n = input_size(miller)

The function returns the number of inputs into n. Here and in the following, the parameter
miller is the same variable as in algorithm 1 line 2.

4.2.2 input

Syntax:

B = input(miller)
B = input(miller,n)
B = input(miller,m,n)
B = input(miller,[m n])
B = input(miller,m,n,p,...)
B = input(miller,[m n p ...])

Using the variants of function input, we can create variables of cfloating type.
The input vector d can be read as a sequential file. At the beginning a pointer points to

the first entry, and after reading the current entry, the pointer is incremented to point the next
element of d. Unless we read exactly n elements applying one or more times the input statement
during the execution of the main m-function and its subfunctions, we get an error message.
Another restriction is that we cannot read an entry more than once, since there is not ’rewind’
or ’seek’routines.

1. B = input(miller)
reads one floating point value from d, adds an input node to the computational graph, and

4

returns a scalar of type cfloating initialized with the value and the identifier of the node
currently added.

2. B = input(miller,n)
reads n2 elements from the input vector, adds the corresponding input nodes, and returns
an n-by-n cfloating matrix initialized with the value - node identifier pairs in column major
order. It has the same effect as:

for j = 1:n
for i = 1:n

B(i,j) = input(miller);
end

end

3. B = input(miller,m,n) or B = input(miller,[m n])
returns an m-by-n cfloating matrix with elements initialized just as above, but with m · n
elements instead of n2:

for j = 1:n
for i = 1:m

B(i,j) = input(miller);
end

end

4. B = input(miller,m,n,p,...) or B = input(miller,[m n p...])
returns an m-by-n-by-p-by-... cfloating array initialized with m · n · p · . . . currently read
and added value - node identifier pairs in column major order.

4.2.3 parameter

In most cases all the size parameters of a numerical algorithm cannot be deduced from the number
of inputs. For example, assume that we would like to analyse an algorithm for least square
solution of an overdetermined system ‖Ax− b‖ → min. In that case the function input_size will
return the number of the elements in the extended matrix

[
A b

]
, but it does not determine

uniquely the number of equations and unknowns. For such cases the user can pass a vector
of parameters to the main m-function while calling the error analyser routines. The parameter
vector is a double precision array. It is the users decision what parameters to use by implementing
the input algorithm, and how to arrange it into a single vector, or to use parameters at all.
Syntax:

b = parameter(miller,i)

returns the i-th entry of the parameter vector served by the user.
Using global variables is another approach to passing parameters, and would also work fine.

However, using the parameter statement is safer than global variables, because the software
monitors the parameter vector for changes. We have mentioned that by straight-line programs
the computational graph is generated only once. If the parameter vector changes, it is guaranteed
that the main m-function will be called and the graph will be regenerated. If parameters are
passed by global variables, it is up to the user to ensure that the graph is regenerated.

5

4.3 The arithmetic nodes

The desired arithmetic nodes can be added to the computational graph by executing arithmetic
operations on cfloating arrays. MATLAB has two different types of arithmetic operations. Matrix
arithmetic operations are defined by the rules of linear algebra. Array arithmetic operations are
carried out element by element, and can be used also with multidimensional arrays. The period
character (.) distinguishes the array operations from the matrix operations. The cfloating array
supports both types with the restriction, that matrix division, elementwise power and matrix
power are not allowed. Note that the cfloating array supports only real arithmetic, it does not
store imaginary part and cannot perform complex operations. The following operators can be
used with cfloating arrays:

1. Addition or unary plus2 . A+B adds A and B. A and B must have the same size, unless
one is a scalar. A scalar can be added to a matrix of any size.

2. Subtraction or unary minus3 . A − B subtracts B from A. A and B must have the same
size, unless one is a scalar. A scalar can be subtracted from a matrix of any size.

3. Matrix multiplication. C = A ∗B is the linear algebraic product of the matrices A and B.
For nonscalar A and B, the number of columns of A must equal the number of rows of B.
A scalar can multiply a matrix of any size. If both A and B are matrices C = A ∗ B has
the same effect as:

[n,k] = size(A);
[l,m] = size(B);
assert(k == l, ’Inner dimensions must agree!’);
for i = 1 : n

for j = 1 : m
C(i,j) = 0.0;
for k = 1 : l

C(i,j) = C(i,j) + A(i,k) * B(k,j);
end

end
end

4. Array multiplication. A .∗B is the element-by-element product of the arrays A and B. A
and B must have the same size, unless one of them is a scalar.

5. Division by a scalar. B/a is the matrix with elements B (i, j) /a (a is a scalar). Note that
this definition differs from the built-in version, where B/A is the matrix division B∗inv (A).

6. Array right division. A ./B is the matrix with elements A (i, j) /B (i, j). A and B must
have the same size, unless one of them is a scalar.

7. Array left division. A .\B is the matrix with elements B (i, j) /A (i, j). A and B must have
the same size, unless one of them is a scalar.

8. Square root. sqrt (A) is the element-by-element square root of the array A.

The above cfloating operations computes the floating point values of the entries of the result-
ing arrays and adds the arithmetic nodes corresponding to the elementary operations evaluated.
The results will be cfloating arrays with elements equal to the resulting value - node identifier
pairs.

2Unary plus does not add a node to the graph, just returns the same cfloating array.
3Unary minus always considered to be error free.

6

4.3.1 Combining cfloating with built-in data type double

The cfloating version of the above operators will be called, if at least one of the operands is of
type cfloating. In the mixed cases, when one operand is a cfloating array and the other is a
double precision MATLAB array4 , the entries of the built-in typed array are considered to be
constants. The operation is only executed after the corresponding constant nodes have been
added. For a particular value a constant node is added only once for the whole execution. For
example if B is a cfloating matrix, then C = zeros (size (B)) +B will add only one constant node
for the value 0.0, and every entry will refer to that node. Furthermore all additional occurrences
of the constant value zero, will refer to that previously added node.

4.3.2 The function cfloating()

Sometimes it is necessary to explicitly convert a built-in double precision array to cfloating type.
Syntax:

C = cfloating(B)

returns a cfloating array, which have the same size as B. The value part of the entries of C will
be initialized with the corresponding elements of B, but no nodes will be added to the graph, and
the node identifier part will be set to zero. The addition of the constant node corresponding to
an entry of C will be postponed until the first occurrence of the particular entry in an arithmetic
operation. In the following we shall refer to a value without corresponding graph node as an
unregistered value. If B is already a cfloating array, the function has no effect.

4.3.3 Programming with cfloating

MATLAB is a matrix-based computing environment with sophisticated matrix and array ma-
nipulation methods. The following functions works with arrays of any type without explicitly
defining (overloading) them, so these methods have the same behavior in conjunction with cfloat-
ing as with built-in types. For detailed description see the MATLAB help.

1. Matrix concatenation functions. cat, horzcat, vertcat, repmat, blkdiag. Function
horzcat(A, B, C,...) is a synonym for [A, B, C,...], and vertcat(A,B,C,..) for [A; B; C;...].
In the case of cat, horzcat, vertcat and blkdiag combination of cfloating and built-in types
is also allowed. If at least one of the arguments is a cfloating array, the arrays of built-in
type will be converted to cfloating arrays with unregistered values, and then concatenated.
So D = [A,B,C] has the same effect as D = [cfloating (A) , cfloating (B) , cfloating (C)].

2. Matrix indexing. The various indexing schemes of MATLAB can also be applied to
cfloating matrices and multidimensional arrays on both sides of the assignment operator,
but the cfloating array itself must not be used as an index. A submatrix resulted from a
cfloating array by indexing will be also of type cfloating.

3. Getting information about a matrix. The functions: length, ndims, numel, size,
isempty, isscalar, isvector can be used in the same way as for built-in types.

4. Reshaping a matrix. The functions: reshape, rot90, fliplr, flipud, flipdim, transpose,
permute, ipermute, circshift, shiftdim can also be used. (transpose(A) is the same as A’).

4Cfloating can be combined only with double in binary operations

7

Algorithm 2 Matrix multiplication

1: function C = mtimes(A,B)
2: [n,k] = size(A);
3: [l,m] = size(B);
4: assert(k == l, ’Inner dimensions must agree!’);
5: C = zeros(n,m);
6: C = cfloating(C);
7: for i = 1 : n
8: for j = 1 : m
9: for k = 1 : l
10: C(i,j) = C(i,j) + A(i,k) * B(k,j);
11: end
12: end
13: end

A good m-file programming practice is preallocating arrays before loops to avoid their growing
inside the loop. Preallocating leads typically to a situation, where explicit conversion to cfloating
is necessary. Consider the case of matrix multiplication. Assume that algorithm 2 called with
cfloating matrices. If we omit line 6, then an error occurs at line 10. Without line 6 the right-
hand side: C(i,j) + A(i,k) * B(k,j) at line 10 results a cfloating scalar, but C is still a double
matrix. By such indexed assignment with different types, as in line 10, MATLAB tries to convert
the right-hand side value to the type of the left-hand side. However, automatic conversion from
cfloating to double is not allowed, which yields an error.

4.3.4 Algorithms that are not straight-line programs

In this section we will see, how we can make the flow of control depend on the value of cfloating
arrays.

1. The function value.
Syntax:

C = value (B)

IfB is a cfloating array, it returns with the value part ofB. C will be a built-in typed double
array with the same size as B. We have mentioned, that automatic (implicit) conversion
of cfloating to double is not allowed, but with value we can make explicit conversion. After
we have gained access to the floating point value of cfloating variables, based on them, we
can construct conditional expressions for if tests and while loops.

2. Relational operators. For convenience we have defined the relational operators (<, >,
<=, >=, ==, ~=) on cfloating arrays. Hence, cfloating arrays can directly (without the
value function) be operands of relational expressions. For instance a > 0.0 has the same
effect as value (a) > 0.0.

If either a value function or a relational operator in conjunction with a cfloating value occurs
in the m-file implementation of the input algorithm, the main m-function will be called and

8

the computational graph will be regenerated at every set of input data, upon which the error
measuring number is to be computed.

4.3.5 Constrained error maximization

Actually the stability analysis by Miller Analyser for MATLAB is the maximization of an error
function ω (d). Beside unconstrained optimization, we can also perform constrained optimization.
The function constraint is used to define constraints for the search for large values of the error
measuring quantity.
Syntax:

constraint(miller,V)

Here, V can be either a cfloating or a double array. If V is cfloating typed, then it is first
converted to built-in type double by calling value(V). The entries of V is then added to the
vector of constraints C (d). The i-th element of C (d) represents the constraint Ci (d) ≥ 0.
The constrained optimization is realized through penalizing the value of ω (d) at inputs for
which any Ci (d) is near to or less than zero. The error measuring value is simply multiplied
by min (1, C1, C2, . . . , Cn) (n ≥ 0), and the maximization is performed on that penalized error
measuring value.

4.3.6 The weak composition model

Syntax:

composition(miller)

instructs the error analyser to apply the weak composition model of error propagation. Suppose F
is a program for computing f (d). Calling function composition separates F into two subprograms
H and G: H consists of the arithmetic operations performed before the invoking of composition
and G consists of the later operations. The weak composition model assumes that the operations
are exact but intermediate values are rounded as they passed from H to G. At most one
composition statement can be executed.

4.3.7 Error handling

By executing the m-files implementing the input algorithm many kinds of error condition may
arise. We distinguish terminating and non-terminating errors. If a terminating error occurs, the
process of error maximization is aborted and control returns to the MATLAB prompt with an
error message. When we execute the input algorithm upon the initial input vector, all the errors
are terminating errors.
In the case of non-straight-line programs the main m-function is called at every set of data,

upon which the error measuring quantity is to be evaluated. By these further executions a non-
terminating error may also occur. A non-terminating error aborts only the execution of the input
algorithm, but maximization is continued by evaluating the error measuring quantity upon other
input vectors. If it is not the initial execution, division by a non-constant cfloating variable with
value zero, or taking the square root of a negative number (non-constant, cfloating) causes a
non-terminating error. The user can also trigger a non-terminating error by calling alg_error:
Syntax:

alg_error(miller,message)

The function also prints an error message to the MATLAB prompt. All other error conditions
terminate the maximization of roundoff errors.

9

4.4 The output nodes

The final step of building a computational graph is choosing the output nodes of the algorithm
from its arithmetic nodes. The values corresponding to the output nodes are those, whose
numerical stability will be analysed.
Syntax:

output(B)

The node identifiers corresponding to the elements of the cfloating array B are added to the
vector of outputs. Every element of B must be a computed value, so only arithmetic node may
become an output node. Several output statements may be executed, but a single node must
not be added more than once. The vector of outputs is written by the output function, as a
sequential file: A pointer is maintained to designate the index where the next element is to be
put. If B has n entries, the pointer is incremented by n.

5 Doing the analyses

In this section we will see how we can analyse the numerical stability of algorithms defined
according to the rules given in the previous section.

5.1 Creating a handle to the error analyser

To perform error analysis, an object of class miller have to be created. By creation we must
provide the name of the main m-function of the input algorithm. For comparing numerical
stability of two algorithms solving the same problem the user must provide the names of the two
main m-files of the algorithms to be compared.
Syntax:

m = miller(mfunction)

Analysing a single algorithm m-function is a string containing the name of the function defining
the method to analyse. By comparing, mfunction contains two names delimited by ’/’. Note
that the names have to be given without the ’.m’extension. In the following m will denote a
properly created object of type miller.

5.2 Setting the parameters of maximization

By the set method parameters can be set, which determine how the analysis will be performed.

1. We can analyse stability according to several error measuring quantities.
Syntax:

m = set(m, ’error_measure’,errorstr)

Sets the error measuring quantity to maximize. errorstr is a string containing the name of
the desired error measuring quantity. Analysing a single algorithm the values of errorstr
can be: ’wkl’, ’wke’, ’jwl’, ’jwe’, ’erl’, ’ere’for the appropriate error comparing value. To
compute condition number errorstr is set to ’cnl’or ’cne’for normwise and elementwise
condition number. Assume that we are comparing two methods and ’method1/method2’
was the m_function argument by constructing of the miller object. The value ’jw1/2’will
set the error comparing value to JWmethod1/method2. Similarly ’jw2/1’, ’er1/2’, ’er2/1’will
set JWmethod2/method1, ERmethod1/method2 and ERmethod2/method1 respectively. For details about
the error measuring numbers see pages 89-94 in the book by Miller and Wrathall.

10

2. The stopping criterion of maximization can also be set.
Syntax:

m = set(m, ’stop_crit’,v)

Sets the stopping criterion for the given value v. v must be a scalar. The maximization
terminates, if this value is reached. Zero turns off testing on reaching a stopping value.

5.3 Error analysis

1. For testing purposes we can omit computing error measuring quantities and just run the
input algorithm.
Syntax:

output = run(m,d)
output = run(m,d,p)

Returns the output vector of the input algorithm. d is a double precision MATLAB array
with the input data. If d is a matrix it will be vectorized in column major order. The entries
of the vector d will be read by the input statement (see section 4.2.2). p is the parameter
vector. Its entries can be reached in the input algorithm by the parameter statement as in
section 4.2.3 described. If p has more than one dimensions, it is also vectorized in column
major order.

2. Computing error measuring numbers at a given set of data d:
Syntax:

rho = <errormeasure>(m,d)
rho = <errormeasure>(m,d,p)

d and p are the same as above. <errormeasure> can be substituted with: wkl, wke,
jwl, jwe, erl, ere, cnl, cne, jw1vs2, jw2vs1, er1vs2, er2vs1 for the desired error measuring
number. For example jw1vs2 will compute JWmethod1/method2. The calling also sets the
’error_measure’ argument to the error measuring quantity being computed. So calling
maxsearch after one of these function will maximize the error value has just been computed.

3. For performing maximization the function maxsearch have to be used:
Syntax:

[rho, dfinal] = maxsearch (m, dinit,methodcode)
[rho, dfinal] = maxsearch (m, dinit,methodcode, p)

dinit is the input data vector from which the maximization starts, methodcode is a string:
’ros’, ’nms’, ’mds’to perform optimization using the Rosenbrock, the Nelder-Mead simplex,
or the Multidirectional Search by Torczon respectively. p is the parameter array as above.

11

5.3.1 Error handling

We have mentioned in section 4.3.7, that terminating and nonterminating errors may occur
during execution of the input algorithm. Further nonterminating errors may arise during the
computation of the error measuring quantity. The nonterminating errors do not abort the error
maximization process. The evaluation of the error measuring quantity fails at the given set of
data, but maximization continues. The nonterminating errors are counted, and at the end of
maximization we can get a report about the errors encountered. As in section 4.3.7 described:
by the first evaluation of the error measuring value all errors are terminating errors. So, the
computation must be error-free at dinit to perform maximization. The nonterminating errors
are the following:

1. Division by zero or taking the square root of negative number during the execution of the
input algorithm.

2. By computing wkl, wke, jwl, jwe, jw1vs2 or jw2vs1 we may get the error message ’OMEGA
failure’. This arise, if either the number of operations that are not error free, or the number
of inputs is less than the number of outputs.

3. By the same error measures as above ’DIAGON failure’arises if the error measuring number
cannot be computed accurately because of rank deficiency.

4. By computing erl, ere, er1vs2, er2vs1 we can get ’GETER failure’. These error measuring
quantitie are the quotient of the norms of two matrices. The error is encountered, if the
divisor is zero.

5. If computing the condition number fails we get ’CONDIT failure’.

5.3.2 Functions reset and resetcounter

The miller object uses dynamic memory allocation: it grows for the needs, but automatically it
does not free up memory. If we would like to free up the memory owned by the object, reset
must be called.
Syntax:

reset(m)

Frees up the memory allocated by m. The object will be the same state as if it were created
right now.
By maxsearch beside the errors the evaluations of the error measure is also counted. The

counters can be reset calling resetcounter.
Syntax:

resetcounter(m)

Before calling maxsearch again, reset or resetcounter need to be called.
Syntax:

destroy(m)

Frees up all the memory allocated by m. Referencing to m after calling destroy causes segmen-
tation violation!

12

5.3.3 The display function

The display function is also defined for the miller class. This function called for built in MATLAB
types, if their values are printed when the semicolon omitted. Display returns several information
on the actual object.

6 Gaussian elimination, an example

It is a good practice to make a separate directory for a particular numerical problem, and
place the m-files implementing algorithms solving that problem into the same directory. The
miller/examples/LinearSystem is an example directory for analysing algorithms solving the linear
system Ax = b, where A ∈ Rn×n nonsingular matrix and b ∈ Rn. We will see, how to analyse
gaussian elimination without pivoting and with partial pivoting.

6.1 Gaussian elimination without pivoting

6.1.1 The main m-function

The main m-function for gaussian elimination without pivoting is gaussM.m (algorithm 3)
Algorithm 3 follows the general scheme as described in section 4.1. By calling subroutines

Algorithm 3 gaussM

1: function gaussM(miller)
2: miller=miller_ptr(miller);
3: [A,b] = InitInput(miller);
4: x = gauss(A,b);
5: output(x);

we firs initialize the input, matrix A, and vector b in line 3. With the cfloating variables we call
the algorithm itself (line 4), and finally we register the output x (line 5).

6.1.2 Initializing the input

Algorithm 4 InitInput

1: function [A, b] = InitInput(miller)
2: n = parameter(miller,1);
3: if n ∗ n+ n ∼= input_size(miller)
4: error(’Number of inputs does not match to the size parameters!’);
5: end
6: A = input(miller,n,n);
7: b = input(miller,n,1);

13

In algorithm 4 we initialize the input and add the input nodes to the computational graph.
As parameter, it is reasonable to pass the size of the linear system n. We do not need other
parameters. We access our parameter in line 2. The inputs of the algorithm are the entries of the
extended matrix

[
A b

]
, which has n (n+ 1) elements. In line 3 we check out if the parameter

served by the user is inconsistent with the size of the input data, and if so we print an error
message and terminate the m-file by calling error. Beside parameters, the other decision that a
priori has to be made, is how to arrange the input into a single vector. In this case, we decided
to vectorize the extended matrix in column major order. Accordantly, we initialize the input as
cfloating variables, and add the n (n+ 1) input nodes to the graph in line 6 and 7. The first
statement reads n2 elements from the input vector and initializes A in column major order, the
second reads n elements and initializes the vector b with them.

6.1.3 The algorithm

Algorithm 5 gauss

1: function x = gauss(A, b)
2: [n,m] = size(A);
3: assert(n == m, ’A is not a square matrix!’);
4: m = numel(b);
5: assert(n == m, ’b must have as many elements as the columns of A!’);
6: x = zeros(n, 1);
7: x = feval(class(A), x);
8: for k = 1 : n - 1
9: for i = k + 1 : n
10: amult = A(i,k) / A(k,k);
11: A(i,k+1:n) = A(i,k+1:n) - amult * A(k,k+1:n);
12: b(i) = b(i) - amult * b(k);
13: end
14: end
15: for i = n : -1 : 1
16: x(i) = (b(i) - A(i,i+1:n) * x(i+1:n)) / A(i,i);
17: end

Algorithm 5 implements gaussian elimination in such way, that it can be called both with
cfloating and with built-in typed input arguments. From line 2 to 5 we assign the size of the
system to n, and check the sizes of A and b for integrity. At line 6 we preallocate the output
vector x. Line 7 converts x to the same type as A (see MATLAB help for functions feval and
class). If A is of type double, it has no effect, but if it is of type cfloating, then it performs
explicit conversion to cfloating as described in section 4.3.2. From line 8 to 17, we compute the
solution of the system by Gaussian elimination without pivoting. If the function was called with
cfloating arguments, the arithmetic nodes are also added to the computational graph.
In the following we will follow the naming convention, that an input algorithm implemented

with a name ’algname’will have a corresponding main m-function ’algnameM’.

14

6.1.4 Error analysis

We have made two auxiliary routines VecInput and UnvecInput to make the analysis more
convenient. Algorithm 6 produces the vectorized input d and the parameter p from a matrix A

Algorithm 6 VecInput

1: function [d, p] = VecInput(A, b)
2: [m,n] = size(A);
3: k = numel(b);
4: assert(m == n, ’A is not a square matrix!’);
5: assert(m == k, ’b must have as many elements as the columns of A!’);
6: d = [A, b];
7: d = d(:);
8: p = n;

Algorithm 7 UnvecInput

1: function [A, b] = UnvecInput(d, p)
2: n = p(1);
3: A = reshape(d(1:n * n), n, n);
4: b = reshape(d(n * n + 1 : end), n, 1);

and a vector b of appropriate size. Algorithm 7 transforms back the parameter p and the input
data d to the matrix A of coeffi cients and the vector b at the right-hand side.

The function run is for computing the solution x (algorithm 8) of the system Ax = b with
algorithm Alg (Alg is a function handle). First we vectorize the input (line 2). In line 3 we create

Algorithm 8 run

1: function x = run(Alg, A, b)
2: [d, p] = VecInput(A, b);
3: M = miller([func2str(Alg), ’M’]);
4: x = run(M, d, p);
5: display(M);
6: destroy(M);

a miller object with the name of the main m-function as argument. According to our naming
convention the name of the main m-function is the name corresponding to the function handle
Alg with an ’M’at the end. We run the algorithm (line 4) and display some information (line
5). Finally at line 6 we free up all the memory allocated.

15

The function rho works very similarly to run, but instead computing the output vector it
computes all the error measuring quantity for the given algorithm, at the given input A and b.

Algorithm 9 maxsearch

1: function [A, b, r] = maxsearch(Alg, A, b, emv, OptMthd, StopCrit)
2: [d, p] = VecInput(A, b);
3: M = miller([func2str(Alg), ’M’]);
4: emv(M, d, p);
5: set(M, ’stop_crit’, StopCrit);
6: [r, d] = maxsearch(M, d, OptMthd, p);
7: [A,b] = UnvecInput(d, p);
8: display(M);
9: destroy(M);

The function maxsearch (algorithm 9) performs error maximization. The arguments:

1. Alg: function handle to the algorithm to analyse, just as above.

2. A and b: the input from which the maximization will start.

3. emv: The error measuring quantity in the form of a function handle to call a function,
mentioned in section 5.3 at list item 2.

4. OptMthd: The method of optimization, that can be ’ros’, ’nms’, ’mds’to perform maxi-
mization using the Rosenbrock, the Nelder-Mead simplex, or the Multidirectional Search
respectively.

5. StopCrit: The stopping criterion. The maximization terminates, if this value is reached.
Zero turns off testing on reaching a stopping value.

The function returns:

1. A and b: the final set of input

2. r: the value of the maximum that has been found.

Now first lets test gauss.m. Go to the directory examples\LinearSystem and type:

[A,b] = testdata(4)

A =

3 1 1 1
1 4 1 1
1 1 5 1
1 1 1 6

b =

16

6
7
8
9

Let’s call gauss with built in typed values values:

x=gauss(A,b)

x =

1.0000
1.0000
1.0000
1.0000

The result is correct.
Now let’s test with run:

x=run(@gauss,A,b)
Object of type miller for analysing algorithm gaussM
The method for evaluating derivatives is: Miller
The error measuring number is: not set
The stopping value is: 0
During last search 1 calls were made
The number of inputs: 20
The number of operations: 62
The number of constants: 1
The number of outputs: 4
The number of constraints: 0
The penalty is: 1
Memory allocated: 5864
Memory used: 5616

x =

1.0000
1.0000
1.0000
1.0000

We get the same result.
Compute the error measuring quantities at A and b:

rho(@gauss,A,b)
Object of type miller for analysing algorithm gaussM
The method for evaluating derivatives is: Miller
The error measuring number is: cne = 3.17012
The stopping value is: 0

17

During last search 8 calls were made
The number of inputs: 20
The number of operations: 62
The number of constants: 1
The number of outputs: 4
The number of constraints: 0
The penalty is: 1
Memory allocated: 5864
Memory used: 5616

ans =

wkl: 0.7551
wke: 1.2732
jwl: 0.7939
jwe: 1.4753
erl: 0.4303
ere: 1.4763
cnl: 8.7647
cne: 3.1701

Perform a maximization:

[Af,bf,r]=maxsearch(@gauss,A,b,@wkl,’ros’,10000)
The chosen error measuring number is wkl.

The error measuring number at the initial data: 0.75507
There are no constraints
The stopping value is: 10000

The choosen search method is ROSENBROCK method.
Starting the maximizer...

Column 1 gives the number of evaluations,
column 2 gives the current error measuring value.

100 1.853138e+000
200 2.234214e+003

!!!Instability located!!!

After 209 evaluations the error measuring number: 3.916696e+004

The condition number at the final set of data is: 7.16683

Object of type miller for analysing algorithm gaussM
The method for evaluating derivatives is: Miller

18

The error measuring number is: wkl = 39167
The stopping value is: 10000
During last search 211 calls were made
The number of inputs: 20
The number of operations: 62
The number of constants: 1
The number of outputs: 4
The number of constraints: 0
The penalty is: 1
Memory allocated: 5864
Memory used: 5616

Stop flag set.
Please call reset or resetcounter before continue.

Af =

2.9079 -2.2531 6.7751 3.9703
1.2126 1.9950 2.2656 8.0076
4.5516 5.6808 8.8495 1.3016
-5.8092 -5.0303 0.0990 7.8322

bf =

6.2908
7.2191
5.7301
9.5742

r =

3.9167e+004

So at Af, bf the error measure is more than 39000.

1. gppConstr and gppConstrM implements gaussian elimination with partial pivoting using
constraints.

2. gppIf and gppIfM implements gaussian elimination with partial pivoting using row inter-
changes.

In the directory MatrixMult:

1. nmultM: ordinary matrix multiplication

19

2. Winograd and WinogradM implements the Winograd algorithm

3. Strassen, StrassenM, Str2x2 implements the strassen algorithm

Let us try the following in directory examples/MatrixMult:

run(@nmult,A,B)
Object of type miller for analysing algorithm nmultM
The method for evaluating derivatives is: Miller
The error measuring number is: not set
The stopping value is: 0
During last search 1 calls were made
The number of inputs: 32
The number of operations: 112
The number of constants: 1
The number of outputs: 16
The number of constraints: 0
The penalty is: 1
Memory allocated: 24000
Memory used: 23752

ans =

7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7

run(@Winograd,A,B)
Object of type miller for analysing algorithm WinogradM
The method for evaluating derivatives is: Miller
The error measuring number is: not set
The stopping value is: 0
During last search 1 calls were made
The number of inputs: 32
The number of operations: 184
The number of constants: 1
The number of outputs: 16
The number of constraints: 0
The penalty is: 1
Memory allocated: 35808
Memory used: 35560

ans =

7 7 7 7
7 7 7 7
7 7 7 7

20

7 7 7 7

run(@Strassen,A,B)
Object of type miller for analysing algorithm StrassenM
The method for evaluating derivatives is: Miller
The error measuring number is: not set
The stopping value is: 0
During last search 1 calls were made
The number of inputs: 32
The number of operations: 247
The number of constants: 0
The number of outputs: 16
The number of constraints: 0
The penalty is: 1
Memory allocated: 46140
Memory used: 45884

ans =

7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7

In all the three cases we got correct results.

[Af,Bf,r] = maxsearch(@Strassen,A,B,@wkl, ’ros’, 10000)
The chosen error measuring number is wkl.

The error measuring number at the initial data: 18.7382
There are no constraints
The stopping value is: 10000

The choosen search method is ROSENBROCK method.
Starting the maximizer...

Column 1 gives the number of evaluations,
column 2 gives the current error measuring value.

160 2.438387e+001
320 2.791163e+001
480 3.568908e+001
640 3.626861e+001
800 3.631956e+001
960 3.632914e+001
1120 3.636743e+001
1280 3.638377e+001
1440 3.638796e+001
1600 3.639103e+001

21

1760 3.667554e+001
1920 3.805665e+001
2080 3.879064e+001
2240 3.929862e+001
2400 4.051778e+001
2560 4.172274e+001
2720 4.191887e+001

3 DIAGON failures.

Object of type miller for analysing algorithm StrassenM
The method for evaluating derivatives is: Miller
The error measuring number is: wkl = 42.2311
The stopping value is: 10000
During last search 2754 calls were made
The number of inputs: 32
The number of operations: 247
The number of constants: 0
The number of outputs: 16
The number of constraints: 0
The penalty is: 1
Memory allocated: 46140
Memory used: 45884

Reporting the number of errors:
DIAGON failure: 3

Af =

4.6320 2.7085 2.7458 1.0841
3.0614 5.1903 3.0586 2.4608
0.4807 2.9094 5.5102 2.0005
-2.7252 5.9879 3.0533 5.4673

Bf =

4.7437 2.2323 1.9933 -0.5063
2.2047 3.4582 -0.9976 -1.7825
-0.7174 -2.1869 5.0484 0.2749
-1.5117 2.5341 -0.7688 5.9973

r =

42.2311

We can also compare two algorithms:

[AI, BI] = testdata(4)

22

AI =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

BI =

4 1 1 1
1 4 1 1
1 1 4 1
1 1 1 4

[A, B] = maxsearchcmp(@Winograd, @nmult, AI, BI, @er1vs2, ’mds’, 1.0e15)
The chosen error measuring number is er.

The error measuring number at the initial data: 2.12158
There are no constraints
The stopping value is: 1e+015

The choosen search method is MULTIDIRECTIONAL SERCH method.
Starting the maximizer...

Column 1 gives the number of evaluations,
column 2 gives the current error measuring value.

160 4.115497e+000
320 9.580887e+001
480 3.667175e+002
640 3.427610e+003
800 1.204476e+004
960 1.100727e+005
1120 3.857973e+005
1280 3.522651e+006
1440 1.234582e+007
1600 1.127252e+008
1760 3.950666e+008
1920 3.607208e+009
2080 1.264213e+010
2240 1.154306e+011
2400 4.045482e+011
2560 3.693781e+012
2720 1.294554e+013
2880 1.182010e+014
3040 4.142574e+014

23

!!!Instability located!!!

After 3066 evaluations the error measuring number: 1.030452e+015

Object of type miller for comparing algorithm WinogradM with nmultM
The method for evaluating derivatives is: Miller
The error measuring number is: er = 1.03045e+015
The stopping value is: 1e+015
During last search 3067 calls were made
The number of inputs: 32
The number of operations: 184 112
The number of constants: 1 1
The number of outputs: 16
The number of constraints: 0
The penalty is: 1
The size of Ukkonen matrix: 0The size of Ukkonen matrix: 0
Memory allocated: 61056
Memory used: 48752

Stop flag set.
Please call reset or resetcounter before continue.

A =

1.419364052641429 1.419364052641429 1.419364052641429 1.419364052641429
1.419364052641429 1.419364052641429 1.419364052641429 1.419364052641429
1.419364052641429 1.419364052641429 1.419364052641429 1.419364052641429
1.419364052641429 1.419364052641429 1.419364052641429 1.419364052641429

B =

1.0e+015 *

0.000000000000004 0.000000000000001 -1.194197188598576 0.000000000000001
0.000000000000001 0.000000000000004 0.796131459065712 0.000000000000001
0.000000000000001 0.000000000000001 0.000000000000004 0.000000000000001
0.000000000000001 0.000000000000001 0.398065729532871 0.000000000000004

Af =

0.5806 0.5806 0.5806 0.5806
0.5806 0.5806 0.5806 0.5806
0.5806 0.5806 0.5806 0.5806
0.5806 0.5806 0.5806 0.5806

24

Bf =

1.0e+014 *

3.9807 0.0000 0.0000 0.0000
-3.9807 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

r =

1.2826e+015

References

[1] Miller, W. Computer search for numerical instability. J. ACM 22, 4 (1975), 512—521.

[2] Miller, W. Software for roundoff analysis. ACM Trans. Math. Softw. 1, 2 (1975), 108—128.

[3] Miller, W. Roundoff analysis by direct comparison of two algorithms. SIAM Journal on
Numerical Analysis 13, 3 (1976), 382—392.

[4] Miller, W., and Spooner, D. Software for roundoff analysis, ii. ACM Trans. Math.
Softw. 4, 4 (1978), 369—387.

[5] Miller, W., and Wrathall, C. Software for roundoff analysis of matrix algorithms.
Academic Press, New York :, 1980.

[6] The MathWorks inc. Matlab external interfaces, version 7., 2004.

25

